

DIMアナログ

バージョンの違い等により、各パラメーターの表現やレイアウト、アイコンなどが異なる場合がございます。予めご了承ください。 本マニュアルは、インハウスで3Dプリンターを使用し、DIMアナログを使用した設計/製作するためのマニュアルです。

3Dプリンター用DIMアナログを使用するための条件

- ✓ 3Shapeのデンタルシステムが使用できること
- ✓ デンタルシステムのアドオンであるアバットメントデザイナー及び
 モデルビルダーが使用できること
- ✓ デンタルシステムに最新のDIMアナログライブラリーが
 インポートされていること

※上記条件が一つでも欠けてしまうと、製作することができないのでご注意ください

本マニュアルは、3Shapeのスキャナーにてスキャニングされたデジタルスキャンデータを使った場合のフローになります。 3Shape以外のスキャナーで取得されたデジタルスキャンデータの場合は手順が異なります。

本マニュアルは、3Dプリンター用DIMアナログを使用し、模型製作する手順にフォーカスしております。 DIMアナログを含まない支台歯模型などの作製方法については、モデルビルダーのヘルプをご参照ください。 DIMアナログ使用 模型製作の概要

DIMアナログを使用した模型製作は、必ずアバットメントをデザインしてから、模型デザイン行います。

※<u>アバットメントデザイナーとモデルビルダーが必須</u>

デンタルシステムのTRIOS Inboxタブから、該当するデジタルスキャンデータを探し、 右クリック⇒承諾 を選択します。 自動で注文タブにオーダーファイルが生成され、以下のような画面が表示されます。

スキャン設定 オブジェクトタイプ:「デジタル印象」 対合歯:「対合歯+咬合のアライン」 が選択されていることを確認します。

左下のコメント欄や技工指示書を参照し、アバットメントで正しいアバットメントの種類 を選択します。

※下図のコメントは空欄です。

※モデルの各アイコンは、支台歯模型を作製する際の条件設定です。

モデルボタン:初期値のままで問題ありません。

アバットメントの種類・モデル製作の指示を入力後OKボタンをクリックします。

準備 下顎のトリミング

下顎のデジタルスキャンデータの余計な部分をトリミングします。 下図のようにノイズが多く、トリミングラインが複雑な場合は、 ラインをクリアして手動で設定して下さい。

必要な部分を左クリックでポイントして囲います。

準備 上顎のトリミング

下顎のトリミングと同様、上顎のデジタルスキャンデータの余分な部分をトリミングします。

準備 咬合平面の設定

咬合平面を確認します。

変更する場合は、サークルプレーンに表示されるノブを使って修正します。

準備 下顎のデータ調整

トリミング済みの下顎のデジタルスキャンデータの形状を微調整したい場合は修正します。 (調整不要の場合は、そのまま次へをクリックしてください)

スキャンボディの位置合わせ

スキャンボディと同形状のデータが表示されます。 ①のスキャンボディとデータ上のスキャンボディ(②)の同じ場所にポイントを打ち、 データのマッチングを行います

スキャンボディの位置合わせ

スキャンボディが、データ上のスキャンボディデータに重なります。 ※上手く重ならない場合は、スキャンボディの違う場所にポイントを打ち、マッチングを再実行してください

アバットメントの挿入方向確認

アバットメントの挿入方向を確認します。 ※本操作の詳細は、アバットメントデザイナーのヘルプをご参照ください。

アバットメントのデザイン

アバットメントをデザインします。 ※本操作の詳細は、アバットメントデザイナーのヘルプをご参照ください。

アバットメントのデザイン

アバットメントをデザインが完了後、問題なければ、モデルをクリックします。 ※作業模型デザインの前に、必ずアバットメントのデザインを完了させる必要があります。

模型のデザイン

アバットメントデザイン完了後、自動でモデルビルダーが起動します。 模型製作にあたり、左下の各項目で調整が必要な場合は、選択し修正します。 ※操作方法は、P9~P14に示す方法と同一です。

模型の仮想切り取り設定(画面表示方法)

作業模型のデザインの詳細を確認/設定します。

画面上にファイルの表示が出ていない場合

模型の仮想切り取り設定

模型タイプ: 支台歯模型の設定 ⇒ 3DプリントDIMには関連しないため初期値でOKです。 支台歯を含む場合は、付録B並びにモデルビルダーのヘルプをご参照ください。

	-
*****	ŝ
ピンタイプ	
PinCylindrical	~
スナップオフピン	
ピンなしホールタイプ	
CADCylindricalBottomHole	\sim
側面射出ホール型	
CADCylindricalSideEjection3x3mm	~
ブッシュインデント型	
ピン形状プッシュインデント	~

支台歯: 支台歯模型の設定 ⇒ 3DプリントDIMには関連しないため初期値でOKです。 支台歯を含む場合は、付録B並びにモデルビルダーのヘルプをご参照ください。

支台會			\$
支台歯形状	標準	~	
垂直挿入方向			
溝の未分割模型			
溝の高さ		0.80 🚔	mm
溝の深さ		0.15 🗬	mm
Ditch margin thickness		0.00 🜲	mm
ベースの壁面角度		2 🖨	度
ベースの高さ		5.0 🚔	mm
ベースストップの表面幅		0.00 🖨	mm
ベースストップの表面角	度	0 🌩	度
ピンの高さ		2.0 🖨	mm

模型の仮想切り取り設定

・インターフェース設定

Die interface	
支台歯から模型までの空隙	0.100 🚔 mn
ポストから模型までの空隙	0.100 🚔 mm
フリクションバーオーバーラップ	0.010 🌩 mr
フリクションバー幅	0.700 🌒 mr
支台歯角度の調整	0.000 🚔
支台歯サイズの調整	0.000 🖨
フリクションバーの数	8
Analog interface	
レベル調整	0.000 🖨 mn
アナログから模型までの空隙	0.100 🚔 mn
フリクションバーオーバーラップ	0.020 🌪 mm
フリクションバー幅	0.800 🌩 mr

- ・<u>レベル調整</u>
 DIMアナログの固定位置を挿入方向に沿って微調整
 ⇒積層造形装置によって微調整が必要
 ⇒初期設定としては、0.000mmを推奨
- ・<u>アナログからモデルまでのスペース</u>
 DIMアナログ挿入形状オフセットの微調整
 ⇒積層造形装置によって微調整が必要
 ⇒初期設定としては、0.100mmを推奨

・模型の製造

模型の数	造	
空洞化		
模型を空	洞化	
表面の厚	ž	1.50 🌒 mm
可変厚さ	を使用	
底部排水 側面排2	cホールサイズ Kホール	0.00 💽 mm
タイプ	なし	~
中心の高	ič	3.0 📷 mm
足巨高度		10.0 mm
支台歯を空洞化		
ドリル補正	E	
ドリル補正	Eを使用	
ドリル半谷	£	0.15 💭 mm
奥型ベース	Rの最小の高さ	4.00 🖨 mm
クリアランス基準値		0.10 🜒 mm

 ・<u>表面の厚み</u> 模型を空洞化(材料節約)するときの厚さ ⇒1.50~2.00mm設定推奨
 ・変更可能な厚みを使用 ⇒√ON
 ・底部排水穴サイズ ⇒3.00~5.00mm設定推奨
 ・<u>その他の項目</u> ⇒左の表示のとおり

模型のデザイン (タグ設定)

模型側面に識別用のテキストを挿入することができます。 タグが必要なければ、付けない事も可能です。

模型のデザイン(咬合器付与)

模型に付与したい咬合器を選択します。 必要に応じて、画面に表示されるノブを使って向きなどを調整します。

模型のデザイン(歯肉の分割)

歯肉を別パーツにしたい場合は、軟組織を選択し、モデルを分割します。

模型のデザイン (最終確認)

模型デザインを最終確認します。

模型のデザイン

模型デザインが完了します。 問題なければ、閉じるをクリックします。

模型の造形

モデルビルダーで作成したSTLデータを使って、積層造形装置で造形します。 お使いの装置の造形方法、仕上げ方法を参照し、模型を完成させます。

DIMアナログの装着方法

選択したインプラントシステムに対応するDIMアナログを準備します。 DIMアナログ本体の〇囲み部の突起を、模型側のDIMアナログ装着部に合わせて挿入します。

固定用パーツのドライバー挿入部にドライバーを挿入します。 模型底部から、本体のネジ部に固定用パーツを取り付けてDIMアナログを固定します。

模型へDIMアナログ装着

【注意】

固定用パーツを強い力で締め付けると、模型が変形して意図した位置にDIMアナログが装着できない恐れがあります。 締め過ぎにご注意ください。

DIMアナログに各種アバットメントを装着して使用する場合、アバットメントの着脱トルクよりも強いトルクで固定用 パーツを固定してください。本体と固定用パーツの締結トルクが弱過ぎると、歯科用アバットメントの着脱の繰り返しに より、模型が破損する恐れがあります。